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Introduction

Linear and nonlinear mixed-effects (LME/NLME) models have been extensively

studied in the literature and applied to analyze longitudinal data.

The classical LME model is often written in the following form:

yi = Xiβ + Zibi + ϵi ,

where bi ∼ N(0,D), ϵi ∼ N(0,Ri ), i = 1, . . . , n, with bi ⊥ ϵi .

One difficulty that arises in longitudinal data analysis is when the response is

censored for some of the observations.

▶ For example: HIV studies, where the detection of the viral load in the

blood compartment is often limited by the sensitivity of a laboratory assay.
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Introduction

Several statistical approaches have been developed to deal with longitudinal

data with censored measurements in the LME framework:

▶ Hughes (1999): Monte Carlo EM (MCEM) for LME with censored

responses (LMEC).

▶ Vaida and Liu (2009): EM algorithm for LME/NLME models with

censored responses, which uses closed-form expressions at the E-step

(LMEC/NLMEC).

▶ Matos et al. (2013): EM algorithm for LMEC/NLMEC based on the

multivariate Student-t distribution, named t-LMEC/t-NLMEC.

▶ Lachos et al. (2019): a robust multivariate linear mixed model for multiple

censored responses based on the class of SMN distributions.
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Introduction

Semiparametric models:

▶ Zeger and Diggle (1994) proposed a semiparametric model where a

nonparametric function is used to model the time effect, and a random

intercept together with a Gaussian stochastic process is used to account

for the within-subject correlation.

▶ Vock et al. (2011) developed a mixed model framework for censored

longitudinal data in which the random effects are represented by the

flexible seminonparametric (SNP) density.

Goal: The aim of this work is to perform a study of statistical inference in the

semiparametric mixed effects models for longitudinal irregularly observed

censored data (SMEC). Extend the work of Mattos et al. (2021).
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Motivating example - A5055 study

The dataset:

▶ 44 infected patients with the human immunodeficiency virus type 1

(HIV-1).

▶ These patients were treated with one of two potent ARV therapies.

▶ The viral load (log10(RNA)) was quantified irregulary on days 0, 7, 14, 28,

56, 84, 112, 140, and 168 of follow-up.

▶ CD4 and CD8, two immunologic markers frequently used to monitor

disease progression in AIDS studies, were also measured along with the

viral load.

▶ 33.5% (106 out of 316) of measurements lies below the limits (50

copies/mL) of assay quantification (left-censored).

▶ A more detailed description of this study and data can be found in Acosta

et al. (2004).
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A5055 study
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Figure: A5055 study. Individual profiles for HIV viral load (in log10 scale) at different follow-up times. Black

lines indicate patients under treatment 1 and red lines indicate patients under treatment 2.
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A5055 study
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Figure: A5055 study. Individual profiles for CD4+ and CD8+ cell count at different follow-up times.
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The model

The semiparametric mixed-effects model is specified as follows:

yi = Xiβ + Zibi +Ni f + ϵi , i = 1, . . . , n; (1)

∗ bi
iid.∼ tq(0,D, ν) and ϵi

ind.∼ tni (0,Ωi , ν), i = 1, . . . , n. Note that, ϵi and bi

are uncorrelated but not necessarily independent;

∗ f = (f (t01 ), . . . , f (t
0
r ))

⊤ is an r × 1 vector with t01 , . . . , t
0
r being the distinct

and ordered values of tij , with f (·) a smooth function of time tij ;

∗ Ni is an (ni × r) incidence matrix whose (j , s)-th element equals the

indicator function I(tij = t0s ) for j = 1, . . . , ni and s = 1, . . . , r ;

∗ D = D(α) models between-subjects variability;

∗ Ωi = σ2Ei is the correlation structure of the error vector, where the ni × ni

matrix Ei incorporates a time-dependence structure.
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Correlation structures
DEC - Munoz et al. (1992)

Damped exponential correlation (DEC):

Ei = Ei (ϕ, ti ) =

[
ϕ
|tij−tik |ϕ2

1

]
, i = 1, . . . , n, j , k = 1, . . . , ni , (2)

For the DEC structure, we have that:

(a) if ϕ2 = 0, then Ei generates the compound symmetry correlation structure;

(b) when 0 < ϕ2 < 1, then Ei presents a decay rate between the compound

symmetry structure and the first-order AR (AR (1)) model;

(c) if ϕ2 = 1, then Ei generates an AR(1) structure;

(d) when ϕ2 > 1, Ei presents a decay rate faster than the AR(1) structure; and

(e) if ϕ2 → ∞, then Ei represents the first-order moving average model, MA(1).
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The model

We assume that the response yij is not fully observed for all i , j .

Let the observed data for the i-th subject be (Vi ,Ci ), where

▶ Vi represents the vector of uncensored readings or censoring level,

▶ Ci is the vector of left-censoring indicators,

such that

yij ≤ Vij if Cij = 1,

yij = Vij if Cij = 0. (3)

The model defined in (1)-(3) is henceforth called the DEC-t-SMEC model.
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The log-likelihood function

Following Vaida and Liu (2009), classical inference on the parameter vector

θ = (β⊤, f⊤, σ2,α⊤,ϕ⊤)⊤ is based on the marginal distribution of yi .

For complete data, we have marginally that yi
ind.∼ tni (µi ,Σi , ν), where

µi = Xiβ +Ni f and Σi = Ωi + ZiDZ⊤
i .

Let yoi be the no
i -vector of observed outcomes and yci be the nc

i -vector of

censored observations for subject i with (ni = no
i + nc

i ) such that Cij = 0 for all

elements in yoi , and 1 for all elements in yci .

The likelihood function for subject i (using conditional probability arguments)

is given by:

Li (θ) = f (yi |θ) = tnoi (y
o
i ;µ

o
i β,Σ

oo
i )Tnci

(Vc
i ;µico ,Si ) = Li . (4)

The log-likelihood function for the observed data is thus given by

ℓ(θ) = ℓ(θ|y) =
∑n

i=1{log Li}.
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The log-likelihood function

However, maximization of ℓ(θ) without imposing restrictions on the function

f(·) may cause over-fitting and non-identification of β (Green, 1987).

A well-known procedure that is based on the idea of log-likelihood penalization

consists of incorporating a penalty function in the log-likelihood, such that:

ℓp(θ, λ) = ℓ(θ|y)− λ

2
J(f), (5)

where J(f) denotes the penalty function over f(·), and λ is a smoothing

parameter that controls the tradeoff between goodness of fit and the

smoothness estimated function.

We consider the following penalty function:

J(f) =

∫ b

a

[f ′′(t)]2dt = f⊤Kf,

where [f ′′(t)] denotes the second derivative of f (t) with [a, b] containing the

values t0j , of j = 1, . . . , r . By maximizing (5), one obtains the MPL estimates.
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Inference
The complete-data log-likelihood function

The model can be expressed in the following hierarchical model:

yi |bi , ui
ind.∼ Nni (µi , u

−1
i Ωi ),

bi |ui
ind.∼ Nq(0, u

−1
i D),

ui
ind.∼ Gamma(ν/2, ν/2).

Assuming that y = (y⊤1 , . . . , y⊤n ), b = (b⊤
1 , . . . , b

⊤
n ), and u = (u1, . . . , un)

⊤ are

hypothetical missing variables. The penalized log-likelihood function for the

model based on complete data yc = (C⊤,V⊤, y⊤, b⊤, u⊤)⊤ is given by

ℓpc(θ|yc) = ℓc(θ|yc)−
λ

2
f⊤Kf, with (6)

ℓc (θ|yc ) =
n∑

i=1

[
−

ni

2
log σ2 −

1

2
log(|Ei |) −

ui

2σ2
(yi − µi − Zibi )

⊤E−1
i (yi − µi − Zibi )

−
1

2
log |D| −

ui

2
b⊤i D−1bi + log h(ui |ν) + C

]
.
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The EM algorithm

E-Step: Calculate the conditional expectation. Given the complete-data

log-likelihood function, the Q-function can be written as:

Qp(θ|θ̂
(k)

) = E
[
ℓc(θ|yc)|V,C, θ̂

(k)
]
− λ

2
f⊤Kf

=
n∑

i=1

Q1i (β, f, σ
2,ϕ|θ̂

(k)
) +

n∑
i=1

Q2i (α|θ̂
(k)

),

where

Q1i (β, f, σ
2|θ̂(k)

) = −
1

2σ2

[
â
(k)
i − 2µ⊤

i E−1
i

(
ûiy

(k)
i − Zi ûib

(k)

i

)
+ û

(k)
i µ⊤

i E−1
i µi

]
−
ni

2
log σ2 −

1

2
log(|Ei |)−

λ

2n
f⊤Kf, and

Q2i (α|θ̂(k)
) = −

1

2
log |D| −

1

2
tr

(
ûibib⊤i

(k)
D−1

)
.

M-Step: Update θ̂
(k)

by the maximization of Q(θ|θ̂
(k)

), which leads to the

closed expressions for β̂, f σ̂2 and D̂.
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Approximate standard errors

Following Segal et al. (1994) and Louis (1982), we derive the covariance matrix

of (β̂, f̂) by using the inverse of the penalized observed information matrix.

Thus, the approximate covariance matrix of (β̂, f̂) is given as:

Ĉov(β̂, f̂) ≈ I−1
p (β, f)

∣∣∣
θ̂
,

where the penalized expected information matrix Ip(β, f) takes the form:

Ip(β, f) =

(
Iββ Iβf
I⊤
βf Iff

)
. (7)

Thus, we obtain the variance of β̂ and f̂ estimated at convergence, respectively,

as:

V̂arapprox(β̂) =
(
Iββ − IβfI

−1

ff I⊤
βf

)∣∣∣
θ̂
,

V̂arapprox(̂f) =
(
Iff − I⊤

βfI
−1

ββIβf
)∣∣∣
θ̂
.
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Estimation of the smoothing parameter

Several authors have shown the connection between a smoothing spline and a

linear mixed-effects model for analysis of longitudinal data (see, for instance,

Speed, 1991; Wang, 1998).

Zhang et al. (1998) treated the smoothing parameter as an additional variance

component. And, this parameter is estimated with other variance components

simultaneously using restricted maximum likelihood (REML) estimation.

Motivated by Zhang et al. (1998) results and using the connection between the

smoothing spline and LME models, we propose to estimate λ using the EM

algorithm due to its simplicity of implementation and stable monotone

convergence.

For more detail, see Mattos et al. (2022).
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Goodness of fit

Under the assumption that yi
ind.∼ tni (µi ,Σi , ν), the Mahalanobis distance,

δ2i (θ) = (yi − µi )
⊤Σ−1

i (yi − µi ), has been considered by several authors to

detect outliers in multivariate Student’s-t models.

The statistics Fi = δ2i (θ)/ni is F-distributed with ni and ν degrees of freedom,

where ni corresponds to the number of measurements associated with the ith

subject.

Therefore, using the Wilson-Hilferty approximation (Johnson et al. (1994) and

Galea-Rojas (1995)), we have that the transformed distance is

F
[z]
i =

(
1− 2

9ν

)
F

1/3
i −

(
1− 2

9ni

)
[(

2

9ν

)
F

2/3
i +

(
2

9ni

)]1/2 , i = 1, . . . , n, (8)

and follows approximately a standard normal distribution. Thus, a Q-Q plot of

the transformed distances, F
[z]
i , can be used to assess the fit of the multivariate

Student’s-t distribution.
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Model selection

For t-SMEC model, we define the AIC and BIC following the proposal of

Taavoni et al. (2021) as follows:

AIC(θ̂) = −2ℓ(θ̂) + 2p∗,

BIC(θ̂) = −2ℓ(θ̂) + p∗ logN,

where ℓ(θ̂) corresponds to the logarithm of the observed likelihood function

ℓ(θ|y), p∗ is the total number of parameters in the model, and N denotes the

sample size.
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Simulation study

We simulated data from the model

yij = β1x1ij + β2x2ij + f (tij) + b0i + b1i tij + ϵij ,

with i = 1, . . . , n, j = 1, . . . , ni , (b0i , b1i )
ind.∼ t2(0,D, ν), and

ϵij
ind.∼ tni (0,Ωi , ν).

▶ The parameters were set at β⊤ = (β1, β2) = (2,−1.5), σ2 = 0.13, ν = 5,

and D with elements α11 = 0.25, α12 = 0.01, and α22 = 0.1.

▶ We chose a smoothing function f (tij) = exp(sin(0.3tij) cos(0.6tij)), with

tij = (1, 2, 3, 4, 5, 6, 7).

▶ For each sample size, we generated 500 samples of the DEC-SMEC model

considering an AR(1) structure with parameter ϕ1 = 0.8.

▶ x1 ∼ U(0, 1) and x2 ∼ U(−1, 1), x1 is independent of x2.

▶ The censoring proportion was fixed at 10% and 20%, and sample sizes at

n = 50, 100 and 300 were considered.
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Simulation study - Asymptotic properties

Table: Simulation study - Asymptotic properties. Results based on 200 simulated

samples.

m Parameter
10% of censoring 20% of censoring

MC Mean MC IM MC SD CP (%) MC Mean MC IM MC SD CP (%)

50

β1 2.0007 0.0431 0.0386 96.4 2.0009 0.0482 0.0445 97.2

β2 -1.4987 0.0221 0.0199 97.2 -1.4981 0.0248 0.0219 97.6

σ2 0.1415 0.1165

ϕ1 0.7666 0.7304

ν 6.1914 6.5627

100

β1 2.0040 0.0311 0.0287 96.8 2.0037 0.0348 0.0313 98.4

β2 -1.5019 0.0156 0.0141 97.2 -1.5018 0.0177 0.0162 97.2

σ2 0.1481 0.1132

ϕ1 0.7992 0.7476

ν 5.5122 5.5816

300

β1 1.9998 0.0175 0.0145 98.8 1.9997 0.0196 0.0160 98.8

β2 -1.4995 0.0087 0.0078 96.0 -1.4997 0.0100 0.0091 96.8

σ2 0.1435 0.1109

ϕ1 0.8116 0.7603

ν 5.1000 5.0965
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Evaluation of the parametric components
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Figure: Simulation study - Asymptotic properties. Graphs of the non-parametric

components with 200 replications. Adjusted curves (gray lines) and true curves (red

lines) for all scenarios.

Larissa A. Matos, ICSA 2022 23



A5055 study

Our purpose is to investigate the relationship between the viral load and the

immunological markers in AIDS clinical trials.

We considered the following model:

yij = CD4+ij β1 + CD8+ij β2 + f (tij) + b0i + b1i tij + ϵij , (9)

where

▶ yij denotes the log10 transformation of the viral load for the ith subject at

time tij (i = 1, 2, . . . , 44 ; j = 1, 2, . . . , ni );

▶ tij = dayij/7 (week);

▶ f (tij) is an arbitrary smoothing function;

▶ b0i , b1i are the random intercept and random slope, respectively for the

i-th patient;

▶ ϵij are random errors.
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A5055 study

Table: A5055 dataset. Model selection criteria for the t-SMEC and N-SMEC models

under different correlation structures. Bold values indicate the best model.

Model Criteria Correlation Structure

AR(1) CS DEC UNC

t-SMEC
AIC 601.5439 633.3916 601.7918 634.2410

BIC 664.9556 696.8033 668.9336 693.9226

N-SMEC
AIC 612.6097 654.4795 610.6652 652.1291

BIC 672.2913 714.1611 674.0769 708.0806
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A5055 study

Table: A5055 study. Parameter estimates. SE indicates the standard errors.

t-SMEC N-SMEC

Parameter Estimate SE Estimate SE

β1 -0.3854 0.1099 -0.5266 0.0969

β2 0.0745 0.0733 0.1092 0.0706

f1 3.6997 0.1288 3.6063 0.1361

f2 3.0630 0.3525 3.0680 0.3867

f3 2.5954 0.1246 2.6507 0.1348

f4 2.3098 0.1307 2.2734 0.1414

f5 1.8553 0.1660 1.7452 0.1703

f6 1.7132 0.1887 1.6694 0.1865

f7 1.6861 0.2366 1.8735 0.2209

f8 2.0109 0.2577 2.2626 0.2446

f9 1.7938 0.3036 1.9835 0.2888

σ2 0.4514 0.7607

α11 0.0231 0.0157

α12 0.0020 -0.00003

α22 0.0021 0.0031

ϕ1 0.8604 0.8621

ν 4.7991 -

λ 19.8736 36.5393
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A5055 study
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Figure: A5055 study. (Left panel) Viral loads in log10 scale (gray line) for all subjects, estimated mean

trajectory (solid line) for the t-SMEC model under the AR structure, and empirical mean trajectory (dotted line).

(Right panel) The fitted curve of the non-parametric part. The shaded regions denote the 95% confidence intervals

obtained by f̂ ± 1.96

√
V̂ar(̂f) .
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A5055 study
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Figure: A5055 dataset. (Left panel) Normal probability plot for the transformed distance under the t-SMEC

model with AR structure. (Middle panel) Estimated weights (ûi ) for the estimated t-SMEC model with AR

structure. (Right panel) Normal probability plot for the transformed distance under the N-SMEC model with AR

structure. The shaded regions are the empirical envelopes obtained through bootstrap.
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Conclusions

▶ This work proposed a semi-parametric mixed model to analyze longitudinal

censored data, assuming that the within-individual measurement errors

and the random effects were distributed with Student’s-t multivariate

distribution.

▶ Simulation studies carried out suggest that the proposed method performs

very well in estimating the parametric part and the nonparametric function.

▶ The approach was applied to analyze HIV-AIDS studies, showing the

t-SMEC model’s flexibility to fit those data sets in which we do not know

the functional form that relates the response variable with the covariates.

▶ It would thus also be interesting to consider a broader family of

distributions such as the multivariate skew-normal distribution (Azzalini

and Valle, 1996) and the multivariate skew-t distribution (Azzalini and

Genton, 2008), which could be more realistic for the random effects and

error terms.
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