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Introduction

Linear and nonlinear mixed-effects (LME/NLME) models have been extensively

studied in the literature and applied to analyze longitudinal data.

The classical LME model is often written in the following form:

yi = Xiβ + Zibi + εi ,

where bi ∼ N(0,D), εi ∼ N(0,Ri ), i = 1, . . . , n, with bi ⊥ εi .

One difficulty that arises in longitudinal data analysis is when the response is

censored for some of the observations.

I For example: HIV studies, where the detection of the viral load in the

blood compartment is often limited by the sensitivity of a laboratory assay.
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Introduction

Several statistical approaches have been developed to deal with longitudinal

data with censored measurements in the LME framework:

I Hughes (1999): Monte Carlo EM (MCEM) for LME with censored

responses (LMEC).

I Vaida and Liu (2009): EM algorithm for LME/NLME models with

censored responses, which uses closed-form expressions at the E-step

(LMEC/NLMEC).

I Matos et al. (2013): EM algorithm for LMEC/NLMEC based on the

multivariate Student-t distribution, named t-LMEC/t-NLMEC.

I Lachos et al. (2019): a robust multivariate linear mixed model for multiple

censored responses based on the class of SMN distributions.
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Introduction

Semiparametric models:

I Assumption for LME models: the response variable is a known parametric

function of both fixed-effects and random-effects.

I Nonparametric regression: no assumptions about the functional form,

letting the data “speak for themselves” in determining the estimated trend.

I Nonparametric regression can also be combined with parametric models to

form hybrid semiparametric models.

I In semiparametric models, the parametric components are often used to

model important factors that affect the response and the nonparametric

component is often used for nuisance factors.
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Introduction

I Zeger and Diggle (1994) proposed a semiparametric model where a

nonparametric function is used to model the time effect, and a random

intercept together with a Gaussian stochastic process is used to account

for the within-subject correlation.

I Vock et al. (2011) developed a mixed model framework for censored

longitudinal data in which the random effects are represented by the

flexible seminonparametric (SNP) density.

Goal: The aim of this work is to perform a study of statistical inference in the

semiparametric mixed effects models for longitudinal irregularly observed

censored data (SMEC).
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Motivating examples

In this work we present two motivating examples from AIDS research.

1. ACTG 315 study; and

2. A5055 study.
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ACTG 315 study

The case study:

I The AIDS Clinical Trials Group (ACTG) protocol 315 considers 46 HIV-1

infected patients treated with a potent antiretroviral regimen.

I Before initiating the antiretroviral regimen, all patients discontinued their

own antiretroviral regimen for five weeks as a “washout” period.

I The aim of this antiretroviral regimen is to show that immunity can be

partially restored in people with moderately advanced HIV disease.
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ACTG 315 study

The dataset:

I The viral load was quantified irregularly on days 0, 2, 7, 10, 14, 21, 28, 56,

84, 168 and 196 after start of treatment, generating 361 observations.

I CD4+ cell counts were also measured along with viral loads.

I Measurements below the detectable threshold of 100 copies/mL (40 out of

361, 11%) were considered left-censored.

I The number of measurements per subject varied from 4 to 10.

I For a more detailed description of the HIV/AIDS study, see Kotzin et al.

(2000).
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ACTG 315 study
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Figure: ACTG 315 study. Individual profiles for HIV viral load (in log10 scale) at different follow-up

times.Scatter plot of the CD4+ cell counts against viral loads (in log10 scale)

Larissa A. Matos, VIII WPSM A semiparametric mixed-effects model for censored longitudinal data 12



ACTG 315 study

This dataset was previously analyzed by Matos et al. (2016) using a biphasic

nonlinear model adopting a DEC structure for the error term (DEC-NLMEC).
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Figure: ACTG 315 study. Profiles for HIV viral load (in log10 scale) for 6 randomly chosen subjects and

estimated trajectories (dotted line) in the DEC-NLMEC model.
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A5055 study

The case study:

I The ACTG protocol A5055 was a phase I/II, randomized, open-label,

24-week comparative study of the pharmacokinetics, tolerability, safety

and antiretroviral effects of two regimens of indinavir, ritonavir and two

nucleoside analogue reverse transcriptase inhibitors on HIV-1 infected

patients.

I ARV therapies:
I Treatment 1: IDV 800 mg twice daily (q12h) plus RTV 200 mg q12h,
I Treatment 2: IDV 400 mg q12h plus RTV 400 mg q12h.

I In AIDS research, the number of RNA copies (viral load) in blood plasma

and its evolutionary trajectories play a prominent role in the diagnosis of

HIV-1 disease progression after an ARV treatment regimen.
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A5055 study

The dataset:

I 44 infected patients with the human immunodeficiency virus type 1

(HIV-1).

I These patients were treated with one of two potent ARV therapies.

I The viral load (log10(RNA)) was quantified irregulary on days 0, 7, 14, 28,

56, 84, 112, 140, and 168 of follow-up.

I CD4 and CD8, two immunologic markers frequently used to monitor

disease progression in AIDS studies, were also measured along with the

viral load.

33.5% (106 out of 316) of measurements lies below the limits (50

copies/mL) of assay quantification (left-censored).

I A more detailed description of this study and data can be found in Acosta

et al. (2004)

Larissa A. Matos, VIII WPSM A semiparametric mixed-effects model for censored longitudinal data 15



A5055 study
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Figure: A5055 study. Individual profiles for HIV viral load (in log10 scale) at different follow-up times. Black

lines indicate patients under treatment 1 and red lines indicate patients under treatment 2.
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A5055 study
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Figure: A5055 study. Individual profiles for CD4+ and CD8+ cell count at different follow-up times.
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The EM Algorithm
Dempster et al. (1977)

Let θ be the parameter vector and yc = (y>, q>) be the vector of complete

data, i.e., the observed data y> and the missing/censored data (or the latent

variables, depending on the situation) q>. The EM algorithm consists basically

of two steps: the expectation (E-step) and the maximization (M-step).

I E-Step: Calculate the conditional expectation

Q(θ | θ̂
(k)

) = E
[
`c(θ | yc) | y, θ̂

(k)
]
,

where θ̂
(k)

is the estimate of θ at the k-th iteration.

I M-Step: Update θ(k) according to

θ̂
(k+1)

= arg max θQ(θ | θ̂
(k)

).
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Correlation structures
DEC - Munoz et al. (1992)

Damped exponential correlation (DEC):

Ei = Ei (φ, ti ) =

[
φ
|tij−tik |φ2

1

]
, i = 1, . . . , n, j , k = 1, . . . , ni , (1)

For the DEC structure, we have that:

(a) if φ2 = 0, then Ei generates the compound symmetry correlation structure;

(b) when 0 < φ2 < 1, then Ei presents a decay rate between the compound

symmetry structure and the first-order AR (AR (1)) model;

(c) if φ2 = 1, then Ei generates an AR(1) structure;

(d) when φ2 > 1, Ei presents a decay rate faster than the AR(1) structure; and

(e) if φ2 →∞, then Ei represents the first-order moving average model, MA(1).
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The model

The semiparametric mixed-effects model is specified as follows :

yi = Xiβ + Zibi + Ni f + εi , i = 1, . . . , n; (2)

∗ bi
iid.∼ Nq(0,D) is independent of εi

ind.∼ Nni (0,Ωi ), i = 1, . . . , n;

∗ f = (f (t0
1 ), . . . , f (t0

r ))> is an r × 1 vector with t0
1 , . . . , t

0
r being the distinct

and ordered values of tij , with f (·) a smooth function of time tij ;

∗ Ni is an (ni × r) incidence matrix whose (j , s)-th element equals the

indicator function I(tij = t0
s ) for j = 1, . . . , ni and s = 1, . . . , r ;

∗ D = D(α) models between-subjects variability;

∗ Ωi = σ2Ei is the correlation structure of the error vector, where the ni × ni

matrix Ei incorporates a time-dependence structure.
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The model

Let y = (y>1 , . . . , y
>
n )>, X = (X>1 , . . . ,X

>
n ), N = (N>1 , . . . ,N

>
n ), and

Z = diag(Z1, . . . ,Zn).

Then, the model (2) can be written as:

y = Xβ + Nf + Zb + ε, (3)

where

b = (b>1 , . . . , b
>
n )> ∼ Nnq(0,D(α)) and

ε = (ε>1 , . . . , ε
>
n )> ∼ NN(0,Ω),

with D(α) = diag(D, . . . ,D) and Ω = diag(Ω1, . . . ,Ωn).

The matrix [X,NT] is of full column rank, where T = [1, t0] and 1 is an r × 1

vector of 1’s.

λ
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The model

We assume that the response yij is not fully observed for all i , j .

Let the observed data for the i-th subject be (Vi ,Ci ), where

I Vi represents the vector of uncensored readings or censoring level,

I Ci is the vector of left-censoring indicators,

such that

yij ≤ Vij if Cij = 1,

yij = Vij if Cij = 0. (4)

The model defined in (2)-(4) is henceforth called the DEC-SMEC model.

Larissa A. Matos, VIII WPSM A semiparametric mixed-effects model for censored longitudinal data 24



The log-likelihood function

Following Vaida and Liu (2009), classical inference on the parameter vector

θ = (β>, f>, σ2,α>,φ>)> is based on the marginal distribution of yi .

For complete data, we have marginally that yi
ind.∼ Nni (µi ,Σi ), where

µi = Xiβ + Ni f and Σi = Ωi + ZiDZ>i .

For responses with censoring pattern as in (4), we have

yi |Vi ,Ci ∼ TNni (µi ,Σi ;A),

where TNni (.;A) denotes the truncated normal distribution on the interval A,

where Ai = Ai1 × . . .× Aini , with

I Aij = (−∞,∞), if Cij = 0;

I Aij = (−∞,Vij ], if Cij = 1.
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The log-likelihood function

Let yo
i be the no

i -vector of observed outcomes and yc
i be the nc

i -vector of

censored observations for subject i with (ni = no
i + nc

i ) such that Cij = 0 for all

elements in yo
i , and 1 for all elements in yc

i .

The likelihood function for subject i (using conditional probability arguments)

is given by:

Li (θ) = f (yi |θ) = P(Vi |Ci ,θ)

= f (yo
i |θ)P(yc

i ≤ Vc
i |Vo

i ,θ)

= φnoi
(yo

i ;µo
i β,Σ

oo
i )Φnci

(Vc
i ;µico ,Si ) = Li . (5)

The log-likelihood function for the observed data is thus given by

`(θ) = `(θ|y) =
∑n

i=1{log Li}.
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The log-likelihood function

However, maximization of `(θ) without imposing restrictions on the function

f(·) may cause over-fitting and non-identification of β (Green, 1987).

A well-known procedure that is based on the idea of log-likelihood penalization

consists of incorporating a penalty function in the log-likelihood, such that:

`p(θ, λ) = `(θ|y)− λ

2
J(f), (6)

where

I J(f) denotes the penalty function over f(·);

I λ is a smoothing parameter that controls the tradeoff between goodness of

fit and the smoothness estimated function.

By maximizing (6), one obtains the MPL estimates.
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Inference
The complete-data log-likelihood function

Let y = (y>1 , . . . , y
>
n )>, b = (b>1 , . . . , b

>
n )>, V = vec(V1, . . . ,Vn) and

C = vec(C1, . . . ,Cn), where (Vi ,Ci ) is observed for the ith subject. So,

I missing data: b and y;

I observed data: V and C;

I complete data: ycom = (C>,V>, y>, b>)>

The complete-data log-likelihood function is given by

`c(θ|ycom) =
n∑

i=1

`i (θ|ycom),

where

`i (θ|ycom) = −
ni

2
log σ2 −

1

2
log(|Ei |)−

1

2σ2
(yi − µi − Zibi )

>E−1
i (yi − µi − Zibi )

−
1

2
log |D| −

1

2
b>i D−1bi + C , (7)

with C being a constant independent of the parameter vector θ.
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The EM algorithm
Q-function

Given the complete-data log-likelihood function, the Q-function can be written

as:

Q(θ|θ̂(k)
) = E

[
`c(θ|ycom)|V,C, θ̂(k)

]
=

n∑
i=1

Qi (θ|θ̂
(k)

)

=
n∑

i=1

Q1i (β, f, σ
2|θ̂(k)

) +
n∑

i=1

Q2i (α|θ̂
(k)

),

where

Q1i (β, f, σ2|θ̂(k)
) = −

ni

2
log σ2 −

1

2
log(|Ei |)−

1

2σ2

[
â

(k)
i − 2µ>i E−1

i

(
ŷ

(k)
i − Zi b̂

(k)
i

)
+ µ

>
i E−1

i µi

]
and

Q2i (α|θ̂
(k)

) = −
1

2
log |D| −

1

2
tr

(
b̂ib>i

(k)
D−1

)
.
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The EM algorithm
E-Step

I E-Step: Calculate the conditional expectation:

â
(k)
i = tr

(
ŷiy>i

(k)
E−1
i − 2ŷib>i

(k)
Z>i E−1

i + b̂ib>i
(k)

Z>i E−1
i Zi

)
,

b̂i
(k)

= E
[
bi

∣∣∣Vi ,Ci , θ̂
(k)
]

= ϕi

(
ŷi

(k) − µi

)
,

b̂ib>i
(k)

= E
[
bib
>
i

∣∣∣Vi ,Ci , θ̂
(k)
]

= Λi +ϕi

(
ŷiy>i

(k)
− 2ŷi

(k)µi + µiµ
>
i

)
ϕ>i ,

ŷib>i
(k)

= E
[
yib
>
i

∣∣∣Vi ,Ci , θ̂
(k)
]

=

(
ŷiy>i

(k)
− ŷi

(k)µ>i

)
ϕ>i ,

ŷiy>i
(k)

= E
[
yiy
>
i |Vi ,Ci , θ̂

(k)
]
,

ŷi
(k) = E

[
yi |Vi ,Ci , θ̂

(k)
]
,

with Λi = (D−1 + Z>i E−1
i Zi/σ

2)−1 and ϕi = ΛiZ
>
i E−1

i /σ2.
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The EM algorithm
E-Step

I Following Green (1987), the MPL estimate of θ is the value that

maximizes the function

Qp(θ|θ̂
(k)

) = Q(θ|θ̂
(k)

)− λ

2
J(f), (8)

where J(f) and λ are as defined in (6) and Q(θ|θ̂
(k)

) is the complete data

log-likelihood function.

I Similarly to Ibacache-Pulgar et al. (2013), we will consider the following

penalty function:

J(f) =

∫ b

a

[f ′′(t)]2dt = f>Kf,

where [f ′′(t)] denotes the second derivative of f (t) with [a, b] containing

the values t0
j , of j = 1, . . . , r .
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The EM algorithm
CM-Step

I CM-step: Update θ̂
(k)

by the maximization of Q(θ|θ̂
(k)

), which leads to
the following expressions:

β̂
(k+1)

=

(
n∑

i=1

X>i Ê
−1(k)
i Xi

)−1 n∑
i=1

X>i Ê
−1(k)
i

(
ŷi

(k) − Ni f̂
(k) − Zi b̂

(k)
i

)
,

f̂(k+1) =

(
n∑

i=1

N>i Ê
−1(k)
i Ni + σ̂2

(k)
λK

)−1 n∑
i=1

N>i Ê
−1(k)
i

(
ŷi

(k) − Xi β̂
(k+1) − Zi b̂

(k)
i

)
,

σ̂2
(k+1)

=
1

N

n∑
i=1

[
â

(k)
i − 2(Xi β̂

(k+1)
+ Ni f̂

(k+1))>Ê
−1(k)
i (̂y

(k)
i − Zi b̂

(k)
i )

+ (Xi β̂
(k+1)

+ Ni f̂
(k+1))>Ê

−1(k)
i (Xi β̂

(k+1)
+ Ni f̂

(k+1))
]
,

D̂(k+1) =
1

n

n∑
i=1

b̂ib>i
(k)
,

φ̂
(k+1) = arg max

φ∈(0,1)×R+

(
−

1

2
log(|Ei |)−

1

2σ̂2
(k+1)

[
â

(k)
i − 2µ̂

(k+1)>
i E−1

i

(
ŷ

(k)
i − Zi b̂

(k)
i

)
+ µ̂

(k+1)>
i E−1

i µ̂
(k+1)
i

])
,

where N =
∑n

i=1 ni .
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Approximate standard errors

In the context of nonparametric regression, the covariance matrix of the MPL

estimates can be evaluated by inverting the observed information matrix

obtained by treating the penalized likelihood as a usual likelihood (Segal et al.,

1994).

Within the framework of censoring, the variance of the parameter estimates can

be obtained using the missing information principle (Louis, 1982), according

which:

observed information = complete information −missing information.
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Approximate standard errors

Following Segal et al. (1994) and Louis (1982), we derive the covariance matrix

of (β̂, f̂) by using the inverse of the penalized observed information matrix.

Thus, the approximate covariance matrix of (β̂, f̂) is given as:

Ĉov(β̂, f̂) ≈ I−1
p (β, f)

∣∣∣
θ̂
,

where the penalized expected information matrix Ip(β, f) takes the form:

Ip(β, f) =

(
Iββ Iβf
I>βf Iff

)
. (9)
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Approximate standard errors

Thus, we obtain the variance of β̂ and f̂ estimated at convergence, respectively,

as:

V̂arapprox(β̂) =
(
Iββ − IβfI

−1

ff I
>
βf

)∣∣∣
θ̂
,

V̂arapprox(̂f) =
(
Iff − I

>
βfI

−1

ββIβf

)∣∣∣
θ̂
,

where

Iββ =
n∑

i=1

{
X>i Σ−1

i Xi − X>i Σ−1
i Var [yi |Vi ,Ci ] Σ−1

i Xi

}
,

Iβf =
n∑

i=1

{
X>i Σ−1

i Ni − X>i Σ−1
i Var [yi |Vi ,Ci ] Σ−1

i Ni + λX>i Σ−1
i (ŷi − µi ) f>K

}
,

Iff =
n∑

i=1

{
N>i Σ−1

i Ni + λK−N>i Σ−1
i Var [yi |Vi ,Ci ] Σ−1

i Ni

+ 2λN>i Σ>i (ŷi − µi ) f>K + λ2Kff>K

}
.

Note that when f = 0, we obtain the variance of the fixed effects in the approximate

ML estimation given by Vaida and Liu (2009) and Hughes (1999).
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Estimation of the smoothing parameter

Several authors have shown the connection between a smoothing spline and a

linear mixed-effects model for analysis of longitudinal data (see, for instance,

Speed, 1991; Wang, 1998).

Zhang et al. (1998) formulated the semiparametric mixed model defined in (3)

as a modified LME model and proposed to estimate the smoothing parameter

λ and the variance component simultaneously using REML.

Following Green (1987) and Zhang et al. (1998), we can write f via a

one-to-one linear transformation as:

f = Tδ + Bd, (10)

where δ and d are vectors with dimensions 2 and r − 2, B = L(L>L)−1 and L

is an r × (r − 2) full-rank matrix satisfying K = LL> and L>T = 0.

Larissa A. Matos, VIII WPSM A semiparametric mixed-effects model for censored longitudinal data 37



Estimation of the smoothing parameter

Given (10), Equation (3) can be reformulated as:

y = X∗β∗ + Z∗b∗ + ε,

where

I X∗ = [X,NT];

I Z∗ = [NB,Z];

I β∗ = (β>, δ>)> are the regression coefficients;

I b∗ = (d>, b>)> are mutually independent random effects, with

d ∼ N(0, σ
2

λ
Ir−2); and

I b and ε have the same distributions as those given in (2).
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Estimation of the smoothing parameter

Consider the following model:

y|b∗ ∼ NN (X∗β∗ + Z∗b∗,Ω) ,

b∗ ∼ N(r−2+q)×1 (0,Ψ) , where Ψ =

(
σ2

λ
Ir−2 0

0 D(α)

)
.

In order to use the EM algorithm, we consider the augmented data vector

ycomp∗ = (y>, b>∗ )>, where b∗ is assumed to be the missing variable.

The complete-data log-likelihood function dropping all the terms that are not

functions of λ, takes the form:

`(λ; ycomp∗) ∝ −
1

2
log |Ψ| − 1

2
b>∗ Ψ−1b∗.
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Estimation of the smoothing parameter

The solution λ̂ can be obtained via the following joint iterative process:

Step 1: Obtain θ̂
(k+1)

, as described previously;

Step 2: (E-step) Given the observed data, evaluate the expectation of
`(λ; ycomp∗) and estimate in the kth iteration :

Q(λ|λ̂(k)) = E
[
`(λ; ycomp∗)|y, λ̂(k)

]
= −

1

2
log |Ψ| −

1

2
tr

(
Ψ−1b̂∗b>∗

(k)
)
,

with b̂∗b>∗
(k)

= E
[
b∗b
>
∗ |y, λ̂(k)

]
Step 3: (M-step) Uptade λ by

λ̂(k+1) = − r − 2

tr

(
Ψ−1 ∂Ψ

∂λ
Ψ−1b̂∗b>∗

(k)
) .

Thus, by repeating Step 1, Step 2 and Step 3, this iterative process leads to

the MPL estimates of θ and the smoothing parameter λ.
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Simulation study

We simulated data from the model

yij = β1x1ij + β2x2ij + f (tij) + b0i + b1i tij + εij ,

with i = 1, . . . , n, j = 1, . . . , ni , (b0i , b1i )
ind.∼ N(0,D), and εij

ind.∼ Nni (0,Ωi ).

I The parameters were set at β> = (β1, β2) = (2,−1.5), σ2 = 0.55, and D

with elements α11 = 0.25, α12 = 0.1, and α22 = 0.2.

I We chose a smoothing function f (tij) = cos(π
√
tij ), with

tij = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12).

I For each sample size, we generated 500 samples of the DEC-SMEC model

considering an AR(1) structure with parameter φ1 = 0.6.

I x1 ∼ U(0, 1) and x2 ∼ U(−1, 2), x1 is independent of x2.

I The censoring proportion was fixed at 15% and sample sizes at

n = 60, 100, 200, and 400 were considered.
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Evaluation of the parametric components
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Figure: Simulation study. Box-plots of the biases of β and σ2 estimates.
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Evaluation of the parametric components
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Figure: Simulation study. Box-plots of the biases of α and φ1 estimates.
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Evaluation of the parametric components
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Figure: Simulation study. Graphs of the nonparametric components with 500

replications. Adjusted curves (gray lines) and true curves (red lines).
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ACTG 315 study

We apply our proposed semiparametric linear mixed-effects model to the

motivating ACTG 315 protocol HIV-1 RNA viral load dataset previously

analyzed by Wu (2002).

We considered the following model:

yij = CD4+
ij β1 + f (tij) + b0i + b1i tij + εij , (11)

where

I yij denotes the log10 transformation of the viral load for the ith subject at

time tij (i = 1, 2, . . . , 46 ; j = 1, 2, . . . , ni );

I f (tij) is an arbitrary smoothing function;

I b0i , b1i are the random intercept and random slope, respectively for the

i-th patient;

I εij are random errors.
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ACTG 315 study

Table: ACTG 315

study. Parameter estimates of the SMEC model (11) for the ACTG 315 dataset. SE indicates the standard errors.

UNC DEC AR(1) CS

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β1 -0.0703 0.0241 -0.0583 0.0292 -0.0617 0.0298 -0.0704 0.0241

f1 4.9380 0.0918 4.9293 0.0912 4.9235 0.0952 4.9474 0.0926

f2 4.9535 0.0778 4.9754 0.0996 4.9764 0.0945 4.9334 0.0834

f3 4.1325 0.0842 4.1298 0.0870 4.1293 0.0898 4.1401 0.0829

f4 3.7863 0.0833 3.7759 0.0867 3.7742 0.0900 3.7825 0.0821

f5 3.4181 0.0893 3.4100 0.0904 3.4079 0.0928 3.4181 0.0875

f6 3.0364 0.1009 3.0304 0.1017 3.0315 0.1022 3.0352 0.1005

f7 2.7905 0.1269 2.7803 0.1294 2.7831 0.1286 2.7893 0.1268

f8 2.4340 0.1647 2.4339 0.1666 2.4210 0.1666 2.4323 0.1647

f9 2.9769 0.3025 2.8663 0.3008 2.8999 0.3034 2.9731 0.3024

f10 3.4407 0.5585 3.3810 0.5995 3.3510 0.6102 3.4380 0.5531

σ2 0.1449 0.2851 0.1991 0.2855

α11 0.2435 0.0507 0.1747 0.1034

α12 -0.0006 0.0008 -0.00003 -0.0006

α22 0.0001 0.0001 0.0001 0.0001

φ1 0.9 0.89 0.4914

φ2 0.6501 1 0

λ 88.2971 63.7242 42.1648 174.4071

loglikp -275.481 -230.7881 -239.2762 -276.1796

AIC 580.406 495.4174 510.4558 585.8651
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ACTG 315 study
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Figure: ACTG 315 study. Fitted curve of nonparametric part. The shaded regions

denote the 95% confidence intervals obtained by f̂ ± 1.96
√

V̂ar(f̂) .
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ACTG 315 study
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A5055 study

Our purpose is to investigate the relationship between the viral load and the

immunological markers in AIDS clinical trials. In order to avoid overly small

estimates, which may be unstable, we standardized the covariates CD4+ and

CD8+ cell counts. The predefined study day of viral load measurement (not

the exact measured day) was used in our analysis.

We considered the following model:

yij = CD4+
ij β1 + CD8+

ij β2 + f (tij) + b0i + b1i tij + εij , (12)

where

I yij denotes the log10 transformation of the viral load for the ith subject at

time tij (i = 1, 2, . . . , 44 ; j = 1, 2, . . . , ni );

I tij = dayij/7 (week);

I f (tij) is an arbitrary smoothing function;

I b0i , b1i are the random intercept and random slope, respectively for the

i-th patient;

I εij are random errors.
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A5055 study

Table: A5055 study. Parameter estimates of the SMEC model for the A5055 dataset. SE indicates the standard

errors.

UNC DEC AR(1) CS

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

β1 -0.5315 0.0915 -0.5009 0.0917 -0.5261 0.0938 -0.5343 0.0004

β2 0.1083 0.0715 0.1101 0.0674 0.1076 0.0696 0.1097 0.0002

f1 3.5924 0.1107 3.6212 0.1319 3.6062 0.1332 3.5844 0.2257

f2 3.0735 0.1184 3.0655 0.1207 3.0679 0.1231 3.0805 0.2214

f3 2.6499 0.0883 2.6468 0.1137 2.6504 0.1163 2.6649 0.2247

f4 2.2510 0.1129 2.2839 0.1207 2.2733 0.1224 2.2433 0.2292

f5 1.7525 0.1319 1.7398 0.1424 1.7452 0.1427 1.7526 0.2430

f6 1.6976 0.1548 1.6603 0.1674 1.6693 0.1662 1.6956 0.2571

f7 1.8995 0.1902 1.8464 0.1974 1.8733 0.1949 1.9039 0.2871

f8 2.3043 0.2135 2.2342 0.2285 2.2610 0.2249 2.2965 0.3188

f9 2.0491 0.2859 1.9512 0.2901 1.9792 0.2840 2.0519 0.3551

σ2 0.3914 0.7364 0.7639 0.5836

α11 0.4661 0.0190 0.0111 0.2756

α12 -0.0243 0.0005 -0.0013 -0.0243

α22 0.0054 0.0033 0.0033 0.0054

φ1 0.9 0.8628 0.3282

φ2 1.3498 1 0

λ 21.6111 33.6207 36.6366 32.4563

loglikp -311.8647 -289.8267 -291.7714 -312.2359

AIC 650.7973 610.9712 612.6926 655.2277
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A5055 study
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Figure: A5055 study. Fitted curve of nonparametric part. The shaded regions denote

the 95% confidence intervals obtained by f̂ ± 1.96
√

V̂ar(f̂) .
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A5055 study
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Figure: A5055 study. Viral loads in log estimated trajectories (red, dotted line) for the SMEC model in the DEC

structure.
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Conclusions

I This work provides a theoretical framework for a semiparametric mixed

model for longitudinal censored data, which can be considered a

generalization of the normal linear/nonlinear mixed-effects models for

censored data proposed by Matos et al. (2016) and Vaida and Liu (2009).

I Simulation studies carried out suggest that the proposed method performs

very well

I The approach was applied to analyze two HIV-AIDS studies, showing the

advantage of the SMEC model to fit datasets with nonlinear

subject-specific trajectories.

I It would thus also be interesting to consider a broader family of

distributions such as the multivariate skew-normal distribution (Azzalini

and Valle, 1996) and the multivariate skew-t distribution (Azzalini and

Genton, 2008), which could be more realistic for the random effects and

error terms.
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Work on progress - Diagnostics analysis

Influence diagnostics are widely used in statistical modeling to identify and

evaluate aberrant and influential points which may cause unwanted effects on

estimation and goodness of fit.

This can be carried out by conducting local influence analyses, a general

statistical technique used to assess the stability of the estimation outputs with

respect to the model inputs, usually through the approach proposed in Cook

(1986).

Additionally, Zhu and Lee (2001) proposed a method to assess the local

influence in a minor perturbation of a statistical model with incomplete data.

Diagnostics analysis:

1. Case-deletion measures

2. Local Influence
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