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INTRODUCTION

The multivariate censored linear mixed model
(MLEMC) is a frequently used tool for a joint analy-
sis of more than one series of longitudinal data. Moti-
vated by a concern of sensitivity to potential outliers or
data with longer-than-normal tails and possible serial
correlation, we develop a robust generalization of the
MLMEC that is constructed by using the scale mixtures
of normal (SMN) distributions.

MOTIVATION: A5055 CLINICAL TRIAL

→ 44 infected patients with the human immunode-
ficiency virus type 1 (HIV-1);

→ These patients were treated with one of two po-
tent ARV therapies;

→ 2 response variables: the viral load (log10(RNA))
and the CD4/CD8, where CD4 and CD8 two im-
munologic markers frequently used to monitor
disease progression in AIDS studies ;

→ 33.5% (106 out of 316) of measurements lies
below the limits of assay quantification (left-
censored).
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SMN DISTRIBUTIONS Y ∼ SMNp(µ,Σ; H)

The stochastic representation is given by

y = µ+ κ(U)1/2Z, (1)

where µ ∈ R is a location vector, Z ∼ N(0,Σ), U is a
positive random variable with cumulative distribution
function (cdf) H(u|ν) and probability density function
(pdf) h(u|ν), ν is a scalar or parameter vector indexing
the distribution of U and κ(U) is the weight function,
with Z ⊥ U.

Special cases distributions: y ∈ Rp
1. The multivariate normal

If P (U = 1) = 1;

2. The multivariate Student’s-t

If U = Gama(ν/2, ν/2) and κ(u) = 1/u.

3. The multivariate slash

If U = Beta(ν, 1) and κ(u) = 1/u.

4. The multivariate contaminated normal

If U is a discrete random variable taking one of
two states and with probability function given by
h(u|ν) = νI{γ}(u) + (1 − ν)I{1}(u) and ν =
(ν, γ) and κ(u) = 1/u.

SAEM ALGORITHM

Let θ be the parameter vector and yc = (y>, q>) be the vector of complete data, i.e., the observed data y> and
the missing/censored data (or the latent variables, depending on the situation) q>.

E-Step: Simulation: Draw q(k,l) (l = 1, . . . ,m) from the conditional distribution f(q|y, θ̂(k−1)
); Stochastic-

approximation: Update Q(θ|θ̂(k)) according to

Q(θ|θ̂(k)) = Q(θ|θ̂(k−1)
) + δk

[
1

m

m∑
l=1

`c(θ|q(k,l),y)−Q(θ|θ̂(k−1)
)

]
,

where `c(θ | yc) is the complete log-likelihood function and δk is a smoothness parameter, i.e., a decreasing sequence
of positive numbers such that

∑∞
k=1 δk =∞ and

∑∞
k=1 δ

2
k <∞.

M-Step: Update θ(k) according to θ̂
(k+1)

= argmax
θ

Q(θ|θ̂(k)).

THE STATISTICAL MODEL

Consider yi = vec(Yi) = (y>i1, . . . ,y
>
ir)
>, and εi = vec(Ei) = (ε>i1, . . . , ε

>
ir)
>, which are of dimension si =

ni × r. The linear mixed effect model for the ith subject can be written as

yi = Xiβ + Zibi + εi, i = 1, . . . , n, (2)

where β = (β>1 , . . . ,β
>
r )> is the p × 1 vector of fixed effects associated with the design matrix Xi and bi =

(b>i1, . . . ,b
>
ir)
> is the q × 1 vector of random effects associated with the design matrix Zi, with p =

∑r
j=1 pj and

q =
∑r
j=1 qj .

Instead of the usual assumption of normality for the errors and random effects, we replace the multivariate normal
distribution by the scale mixture of multivariate normal distributions, thus it follows that the model can be expressed
as

yi | bi
ind.∼ SMNsi (Xiβ + Zibi,Ri;H1), and bi

ind.∼ SMNq(0,D;H2), i = 1, . . . , n. (3)

Using the stochastic representation, the hierarchical representation (four-stages) to the model defined is

yi | bi, κi
ind.∼ Nsi (Xiβ + Zibi, κ

−1
i Ri),

bi | τi
ind.∼ Nq(0, τ

−1
i D),

κi
ind.∼ H1(ν)

τi
ind.∼ H2(η), i = 1, . . . , n, (4)

where D = D(α) = Djj′ is a q × q dispersion matrix that depends on the unknown and reduced parameters α.
We also assume that the within-subject errors for one given response at different occasions have serial correlation
which is described by a ni×ni autocorrelation matrix Ωi = Ωi(φ; ti) that has a parsimonious dependence structure
involving only parameter φ and measurement time ti of subject i, and that for the multiple responses at a particular
occasion are correlated with an r × r variance-covariance matrix Σ = [σ2

jj′ ]. Accordingly, Ri = Σ ⊗ Ωi, where ⊗
denotes the Kronecker product. We adopt a DEC (damped exponential correlation) structure for Ωi, which is defined
as:

Ωi = Ωi(φ, ti) =

[
φ
|tij−tik|φ2
1

]
, i = 1, . . . , n, j, k = 1, . . . , ni, (5)

whereφ = (φ1, φ2)>, the parameter φ1 describes the autocorrelation between observations separated by the absolute
length of two time points, and the parameter φ2 permits acceleration of the exponential decay of the autocorrelation
function, defining a continuous-time autoregressive model.

We are interested in the case where left-censored observations can occur. That is, the observed data for the i-
th subject is represented by (Vi,Ci), where Vi is the vector of uncensored observation or limit of quantification
and Ci is the vector of censoring indicator whose value equals one if censored observation and zero if uncensored
observation; such that, considering the left censored case, we have that

yijk ≤ Vijk if Cijk = 1, yijk = Vijk if Cijk = 0.

APLLICATTION

The model

yi1k = β10 + β11tik + β12treati + β13t
0.5
ik

+ β14treati × tik + bi10 + bi11tik + ei1k,

yi2k = β20 + β21tik + β22treati + β23treati × tik

+ bi20 + bi21tik + ei2k,

where yi1k is the log10 (RNA) response for subject i
measured at tk and yi2k is the log(CD4/CD8) response
for subject i measured at tk ; 33% of all viral load
measurements are below the detection limit.

Parameters Estimate (SE) Parameters Estimate (SE)
β10 3.743 (0.134) d11 0.1446 (0.0829)
β11 0.130 (0.026) d21 0.0011 (0.0133)
β12 -0.005 (0.067) d22 -0.0884 (0.1182)
β13 -0.957 (0.098) d31 -0.0011 (0.0033)
β14 -0.007 (0.025) d32 0.0034 (0.0027)
β20 -1.284 (0.077) d33 -0.0122 (0.0116)
β21 0.005 (0.005) d41 -0.0004 (0.0004)
β22 0.252 (0.084) d42 0.2727 (0.0861)
β23 -0.003 (0.007) d43 0.0008 (0.0015)
ν 4.737 (0.003) d44 0.0001 (0.0001)
σ11 0.409 (0.076) σ21 -0.039 (0.020)
σ22 0.050 (0.011)
φ1 0.704 (0.065) φ2 0.632 (0.131)

loglik -344.79 AIC 739.59
BIC 850.81

CONCLUSIONS

In this work, we have introduced a robust multi-
variate linear mixed model for multiple censored res-
ponses based on the class of SMN distributions. The
main advantage of the proposed SMN-MLMEC model
is that it can reduce the negative impact of distribu-
tional misspecification and outliers on the parameter
estimation. Moreover, the SMN class allows a con-
venient framework for implementing the SAEM algo-
rithm, leading to an efficient ML estimation of model
parameters. An additional characteristic of our pro-
posed model is that it allows considering different dis-
tributions for the error terms, thereby overcoming the
aforementioned limitation of the MLMEC model and
broadening the scope of censored mixed models.

REFERENCES

Andrews, D. F. & Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal
of the Royal Statistical Society.

Delyon, B., Lavielle, M. & Moulines, E. (1999). Convergence of a stochastic approximation
version of the em algorithm. Annals of Statistics.

Muñoz, A., Carey, V., Schouten, J. P., Segal, M. & Rosner, B. (1992). A parametric family
of correlation structures for the analysis of longitudinal data. Biometrics.
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