

Heavy-tailed longitudinal regression models for censored data: A likelihood based perspective

Larissa Avila Matos

10th International Conference of the ERCIM WG on Computational and Methodological Statistics

Joint work with: Victor H. Lachos, Tsung-I Lin and Luis M. Castro

Support: **Support**:

10 de maio de 2019

Summary

1 Introduction

- **2** Scale mixture of normal distributions (SMN)
- **3** The SMN censored regression model
- 4 The SAEM Algorithm
- 5 Inference
- 6 Data Analysis

7 Conclusions

Summary

1 Introduction

- 2 Scale mixture of normal distributions (SMN)
- **3** The SMN censored regression model
- 4 The SAEM Algorithm
- 5 Inference
- 6 Data Analysis

7 Conclusions

- In AIDS studies it is quite common to observe viral load measurements that are collected irregularly over time. Moreover, these measurements can be subjected to some upper and/or lower detection limits depending on the quantification assays.
- A complication arises when these continuous repeated measures have a heavy-tailed behavior.
- For such data structures, we propose a robust censored linear model based on the class of multivariate scale mixtures of normal distributions.
- A recent proposal uses the Student-t distribution (Garay et al. (2015))

Motivating data

- Example: Unstructured treatment interruption- UTI data
 - The viral loads were monitored at 0, 1, 3, 6, 9, 12, 18, and 24 months after the treatment interruption
 - 72 perinatally HIV-infected children (Saitoh et al. 2008);
 - 7% of the data are left-censored (362 observations).

(b)

		\log_{10} HIV-1 RNA							
		month 0	$^{\mathrm{month}}_{1}$	month 3	month 6	month 9	month 12	month 18	month 24
log ₁₀ HIV-1 RNA	month 0		0.4877	0.4100	0.4052	0.4820	0.4435	0.3441	0.6529
	month 1	0.4877		0.9145	0.8551	0.8455	0.6978	0.7090	0.6140
	month 3	0.4100	0.9145		0.9255	0.8638	0.7209	0.7601	0.6301
	month 6	0.4052	0.8551	0.9255		0.8238	0.6490	0.6548	0.5314
	month 9	0.4820	0.8455	0.8638	0.8238		0.9185	0.7642	0.8061
	month 12	0.4435	0.6978	0.7209	0.6490	0.9185		0.6646	0.6897
	month 18	0.3441	0.7090	0.7601	0.6548	0.7642	0.6646		0.8947
	month 24	0.6529	0.6140	0.6301	0.5314	0.8061	0.6897	0.8947	

Longitudinal Models

Censored longitudinal models with normal distribution

- Samson et al. (2006) [Computational Statistical & Data Analysis]
- Vaida et al. (2007) [Computational Statistical & Data Analysis]
- Vaida & Liu (2009) [Journal of Computational and Graphical Statistics]
- Matos et al. (2013b) [Computational Statistical & Data Analysis]

Censored longitudinal models with heavy-tailed distribution

- Lachos et al. (2011) [Biometrics]
- Garay et al. (2015) [Statistical Methods in Medical Research]
- Matos et al. (2013a) [Statistica Sinica]

Summary

1 Introduction

2 Scale mixture of normal distributions (SMN)

- **3** The SMN censored regression model
- 4 The SAEM Algorithm

5 Inference

6 Data Analysis

7 Conclusions

Scale mixture of normal distributions (SMN)

Andrews & Mallows (1974); Lange & Sinsheimer (1993)

Stochastic representation

$$\mathbf{y} = \boldsymbol{\mu} + \kappa(\mathbf{U})^{1/2} \mathbf{Z},\tag{1}$$

where,

- $\mu \in \mathbb{R}$ is a location vector;
- $\blacksquare Z \sim N(0, \mathbf{\Sigma});$
- U is a positive random variable with cumulative distribution function (cdf) $H(u|\nu)$ and probability density function (pdf) $h(u|\nu)$ independent of Z;
- $\kappa(\mathbf{U})$ is the weight function;
- Notation: $\mathbf{y} \sim \text{SMN}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \mathbf{H}).$

$$\mathbf{y}|\mathbf{U} = u \sim N(\boldsymbol{\mu}, \kappa(u)\boldsymbol{\Sigma}),$$
$$\mathbf{U} = u \sim h(u|\boldsymbol{\nu}).$$
(2)

Scale mixture of normal distributions (SMN)

Special cases: $\mathbf{y} \in \mathbb{R}^p$ and $\kappa(u) = 1/u$;

• The multivariate normal distribution

$$P(U = 1) = 1;$$

Distribution function: $N(\mathbf{y}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \phi_p(\mathbf{y}; \boldsymbol{\mu}, \boldsymbol{\Sigma}).$

■ The multivariate Student's-t distribution

• U = Gamma(
$$\nu/2, \nu/2$$
);
• Distribution function:

$$T(\mathbf{y}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu) = \frac{\Gamma(\frac{p+\nu}{2})}{\Gamma(\frac{\nu}{2})\pi^{p/2}}\nu^{-p/2}|\boldsymbol{\Sigma}|^{-1/2}\left(1 + \frac{d}{\nu}\right)^{-(p+\nu)/2},$$
where $d = (\mathbf{y} - \boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{y} - \boldsymbol{\mu}).$

The multivariate slash distribution

U = Beta(v, 1);
Distribution function:

$$\operatorname{SL}(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\Sigma},\nu) = \nu \int_0^1 u^{\nu-1} \phi_p(\mathbf{y};\boldsymbol{\mu},u^{-1}\boldsymbol{\Sigma}) du, \quad u \in (0,1), \quad \nu > 0.$$

The multivariate contaminated normal distribution

- U is a discrete random variable taking one of two states and with probability function given by $h(u|\boldsymbol{\nu}) = \boldsymbol{\nu}\mathbb{I}_{\{\gamma\}}(u) + (1-\boldsymbol{\nu})\mathbb{I}_{\{1\}}(u)$ and $\boldsymbol{\nu} = (\boldsymbol{\nu}, \gamma);$
- Distribution function:

$$CN(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\nu}) = \nu \phi_p(\mathbf{y};\boldsymbol{\mu},\gamma^{-1}\boldsymbol{\Sigma}) + (1-\nu)\phi_p(\mathbf{y};\boldsymbol{\mu},\boldsymbol{\Sigma}).$$

The parameter ν can be interpreted as the proportion of outliers while γ may be interpreted as a scale factor.

Scale mixture of normal distributions (SMN)

Summary

1 Introduction

2 Scale mixture of normal distributions (SMN)

3 The SMN censored regression model

4 The SAEM Algorithm

5 Inference

6 Data Analysis

7 Conclusions

The Model

The data can be fit using the model

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \boldsymbol{\epsilon}_i, \quad i = 1, \dots, n.$$
(3)

Considering the left censored case, we have

 $\begin{array}{rcl} y_{ij} & \leq & V_{ij} & \mathrm{se} \ \ C_{ij} = 1, \\ y_{ij} & = & V_{ij} & \mathrm{se} \ \ C_{ij} = 0, \end{array}$

where,

- \mathbf{y}_i is a $n_i \times 1$ vector containing the observations for subject *i* measured at particular time points $\mathbf{t}_i = (t_{i1}, \ldots, t_{in_i});$
- **\beta** is the vector of fixed effects of dimension $(p \times 1)$;
- \mathbf{X}_i is an $n_i \times p$ design matrix;
- ϵ_i is the vector of random errors of dimension $(n_i \times 1), \epsilon_i \stackrel{\text{ind.}}{\sim} \text{SMN}_{n_i}(\mathbf{0}, \mathbf{\Omega}_i; \mathbf{H}),$ where $\mathbf{\Omega}_i = \sigma^2 \mathbf{E}_i$.

Correlation structures - Muñoz et al. (1992)

Damped exponential correlation (DEC):

$$\mathbf{E}_{i} = \mathbf{E}_{i}(\boldsymbol{\phi}, \mathbf{t}_{i}) = \begin{bmatrix} \phi_{1}^{|t_{ij} - t_{ik}|^{\phi_{2}}} \end{bmatrix}, \ i = 1, \dots, n, \ j, k = 1, \dots, n_{i},$$
(4)

For the DEC structure, we have that:

- (a) if $\phi_2 = 0$, then E_i generates the compound symmetry correlation structure;
- (b) when $0 < \phi_2 < 1$, then E_i presents a decay rate between the compound symmetry structure and the first-order AR (AR (1)) model;
- (c) if $\phi_2 = 1$, then E_i generates an AR(1) structure;
- (d) when $\phi_2 > 1$, E_i presents a decay rate faster than the AR(1) structure; and
- (e) if $\phi_2 \to \infty$, then E_i represents the first-order moving average model, MA(1).

Stochastic representation

Using the stochastic representation (1), the hierarchical representation (two-stages) of the linear regression model defined in(3) is given by

$$\mathbf{y}_{i} \mid \mathbf{U}_{i} = u_{i} \quad \stackrel{\text{ind.}}{\sim} \quad \mathbf{N}_{n_{i}}(\mathbf{X}_{i}\boldsymbol{\beta}, \kappa(u_{i})\boldsymbol{\Omega}_{i}),$$
$$\mathbf{U}_{i} \quad \stackrel{\text{iid.}}{\sim} \quad h(u_{i}|\boldsymbol{\nu}). \tag{5}$$

Censored Response

Recall that we are interested in the case where left-censored observations can occur. That is, the observed data for the *i*-th subject is represented by $(\mathbf{V}_i, \mathbf{C}_i)$, where

- \mathbf{V}_i is the vector of uncensored observation or limit of quantification; and
- C_i is the vector of censoring indicator whose value equals one if censored observation and zero if uncensored observation,

such that, considering the left censored case, we have that

 $\begin{array}{rcl} y_{ij} & \leq & V_{ij} & \mathrm{se} & C_{ij} = 1, \\ y_{ij} & = & V_{ij} & \mathrm{se} & C_{ij} = 0, \end{array}$

with i = 1, ..., n and $j = 1, ..., n_i$.

The likelihood function

• Frequentist inference on the parameter vector $\boldsymbol{\theta} = (\boldsymbol{\beta}^{\top}, \sigma^2, \boldsymbol{\phi}^{\top})$ is based on the marginal distribution for \mathbf{y}_i . For the SMN-CR model with complete data, we have that, marginally, $\mathbf{y}_i \stackrel{\text{ind.}}{\sim} \text{SMN}_{n_i}(\mathbf{X}_i \boldsymbol{\beta}, \boldsymbol{\Omega}_i, \boldsymbol{\nu})$,

Proposition

Let \mathbf{y} be partitioned as $\mathbf{y}_i = vec(\mathbf{y}_i^o, \mathbf{y}_i^c)$ with $dim(\mathbf{y}_i^o) = n_i^o$, $dim(\mathbf{y}_i^c) = n_i^c$ and $n_i^o + n_i^c = n_i$, where $vec(\cdot)$ denotes the operator which stacks vectors or matrices of the same number of columns and $C_{ij} = 0$ for all elements in \mathbf{y}_i^o , and 1 for all elements in \mathbf{y}_i^c . Let \mathbf{V}_i , \mathbf{X}_i , and $\mathbf{\Omega}_i$ also be partitioned as follows:

$$\begin{split} \mathbf{V}_{i} = vec(\mathbf{V}_{i}^{o}, \mathbf{V}_{i}^{c}), \ \mathbf{X}_{i}^{\top} = (\mathbf{X}_{i}^{o}, \mathbf{X}_{i}^{c}), \ and \ \mathbf{\Omega}_{i} = \begin{pmatrix} \mathbf{\Omega}_{i}^{oo} & \mathbf{\Omega}_{i}^{oc} \\ \mathbf{\Omega}_{i}^{co} & \mathbf{\Omega}_{i}^{cc} \end{pmatrix}. \ Then, \ we \ have \\ \mathbf{y}_{i} \mid u_{i} \sim N_{n_{i}}(\mathbf{X}_{i}\boldsymbol{\beta}, \kappa(u_{i})\mathbf{\Omega}_{i}), \end{split}$$

where

$$\mathbf{y}_{i}^{o} \mid u_{i} \sim N_{n_{i}^{o}}(\mathbf{X}_{i}^{o}\boldsymbol{\beta}, \kappa(u_{i})\boldsymbol{\Omega}_{i}^{oo}) \quad and \quad \mathbf{y}_{i}^{c} \mid \mathbf{y}_{i}^{o}, u_{i} \sim N_{n_{i}^{c}}(\boldsymbol{\mu}_{i}, \kappa(u_{i})\mathbf{S}_{i}), \tag{6}$$
with $\boldsymbol{\mu}_{i} = \mathbf{X}_{i}^{c}\boldsymbol{\beta} + \boldsymbol{\Omega}_{i}^{co}(\boldsymbol{\Omega}_{i}^{oo})^{-1}(\mathbf{y}_{i}^{o} - \mathbf{X}_{i}^{o}\boldsymbol{\beta}) \text{ and } \mathbf{S}_{i} = \boldsymbol{\Omega}_{i}^{cc} - \boldsymbol{\Omega}_{i}^{co}(\boldsymbol{\Omega}_{i}^{oo})^{-1}\boldsymbol{\Omega}_{i}^{oc}.$

Matos et.al, CMStatistics 2017

SMN-CR model

The likelihood function

• The likelihood function is given by $L(\boldsymbol{\theta}) = \prod_{i=1}^{n} L_i(\boldsymbol{\theta})$, where

Proposition

Let $\Phi_{n_i}(\mathbf{u}; \mathbf{a}, \mathbf{A})$ and $\phi_{n_i}(\mathbf{u}; \mathbf{a}, \mathbf{A})$ be the cdf (left tail) and pdf, respectively, of $N_{n_i}(\mathbf{a}, \mathbf{A})$ computed at \mathbf{u} . The likelihood function for the *i*-th subject is given by

$$L_{i}(\boldsymbol{\theta}) = f(\mathbf{y}_{i}^{o} \mid \boldsymbol{\theta})f(\mathbf{y}_{i}^{c} \leq \mathbf{V}_{i}^{c} \mid \mathbf{y}_{i}^{o}, \boldsymbol{\theta})$$

$$= \int_{0}^{\infty} f(\mathbf{y}_{i}^{o} \mid u_{i}, \boldsymbol{\theta})f(\mathbf{y}_{i}^{c} \leq \mathbf{V}_{i}^{c} \mid u_{i}, \mathbf{y}_{i}^{o}, \boldsymbol{\theta})dH(u_{i})$$

$$= \int_{0}^{\infty} \phi_{n_{i}^{o}}(\mathbf{y}_{i}^{o}; \mathbf{X}_{i}^{o}\boldsymbol{\beta}, \kappa(u_{i})\boldsymbol{\Omega}_{i}^{oo})\Phi_{n_{i}^{c}}(\mathbf{V}_{i}^{c}; \boldsymbol{\mu}_{i}, \kappa(u_{i})\mathbf{S}_{i})dH(u_{i}).$$
(7)

• The log-likelihood function is given by $\ell(\boldsymbol{\theta}|\mathbf{y}) = \sum_{i=1}^{n} \{\log L_i(\boldsymbol{\theta})\}.$

The likelihood function: Special cases

The likelihood function for special elements of the SMN class are given by.

(a) (normal) If U is degenerate in 1, i.e., P(U = 1) = 1, then

$$L_i(\boldsymbol{\theta}) = \phi_{n_i^o}(\mathbf{y}_i^o; \mathbf{X}_i^o \boldsymbol{\beta}, \kappa(u_i) \boldsymbol{\Omega}_i^{oo}) \Phi_{n_i^c}(\mathbf{V}_i^c; \boldsymbol{\mu}_i, \mathbf{S}_i)$$

(b) (Student's-t) If $\kappa(u) = 1/u$ and U is distributed as $Gamma(\nu/2, \nu/2)$, with $\nu > 0$, then

$$L_{i}(\boldsymbol{\theta}) = t_{n_{i}^{o}}(\mathbf{y}_{i}^{o}; \mathbf{X}_{i}^{o}\boldsymbol{\beta}, \boldsymbol{\Omega}_{i}^{oo}, \nu) \mathrm{T}_{n_{i}^{c}}\left(\mathbf{V}_{i}^{c}; \boldsymbol{\mu}_{i}, \left(\frac{\nu + \boldsymbol{\delta}}{\nu + n_{i}^{o}}\right) \mathbf{S}_{i}, \nu + n_{i}^{o}\right),$$

where $\boldsymbol{\delta} = (\mathbf{y}_i^o - \mathbf{X}_i^o \boldsymbol{\beta})^\top (\boldsymbol{\Omega}_i^{oo})^{-1} (\mathbf{y}_i^o - \mathbf{X}_i^o \boldsymbol{\beta}).$

(c) (contaminated normal) If κ(u) = 1/u and U is a discrete random variable taking one of two states and with probability function given by h(u|ν) = νI_{γ}(u) + (1 − ν)I_{{1}(u), then

$$\begin{split} L_i(\boldsymbol{\theta}) &= \nu \left[\phi_{n_i^o}(\mathbf{y}_i^o; \mathbf{X}_i^o \boldsymbol{\beta}, \gamma^{-1} \boldsymbol{\Omega}_i^{oo}) \Phi_{n_i^c}(\mathbf{V}_i^c; \boldsymbol{\mu}_i, \gamma^{-1} \mathbf{S}_i) \right] \\ &+ (1-\nu) \left[\phi_{n_i^o}(\mathbf{y}_i^o; \mathbf{X}_i^o \boldsymbol{\beta}, \boldsymbol{\Omega}_i^{oo}) \Phi_{n_i^c}(\mathbf{V}_i^c; \boldsymbol{\mu}_i, \mathbf{S}_i) \right]. \end{split}$$

Matos et.al, CMStatistics 2017

Summary

1 Introduction

- 2 Scale mixture of normal distributions (SMN)
- **3** The SMN censored regression model

4 The SAEM Algorithm

5 Inference

6 Data Analysis

7 Conclusions

EM Algorithm - Dempster et al. (1977)

Let $\boldsymbol{\theta}$ be the parameter vector and $\boldsymbol{y}_c = (\boldsymbol{y}^{\top}, \boldsymbol{q}^{\top})$ be the vector of complete data, i.e., the observed data \boldsymbol{y}^{\top} and the missing/censored data (or the latent variables, depending on the situation) \boldsymbol{q}^{\top} . The EM algorithm consists basically of two steps: the expectation (E-step) and the maximization (M-step).

E-Step: Calculate the conditional expectation

$$Q(\boldsymbol{\theta} \mid \widehat{\boldsymbol{\theta}}^{(k)}) = E\left[\ell_c(\boldsymbol{\theta} \mid \mathbf{y}_c) \mid \mathbf{y}, \widehat{\boldsymbol{\theta}}^{(k)}\right],$$

where $\widehat{\boldsymbol{\theta}}^{(k)}$ is the estimate of $\boldsymbol{\theta}$ at the k-th iteration.

• M-Step: Update $\theta^{(k)}$ according to

$$\widehat{\boldsymbol{\theta}}^{(k+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta} \mid \widehat{\boldsymbol{\theta}}^{(k)}).$$

MCEM Algorithm - Wei & Tanner (1990)

E-Step: MC:

1. Simulation-step: Draw $\mathbf{q}^{(k,l)}$ (l = 1, ..., m) from the conditional distribution $f(\mathbf{q}|\mathbf{y}, \widehat{\boldsymbol{\theta}}^{(k-1)})$;

2. Approximation-step: Using $\mathbf{q}^{(k,l)}$ (l = 1, ..., m), calculate the conditional expectation $Q(\boldsymbol{\theta} \mid \widehat{\boldsymbol{\theta}}^{(k)})$ through the approximation,

$$Q(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k)}) = \frac{1}{m} \sum_{l=1}^{m} \ell_c(\boldsymbol{\theta}|\mathbf{q}^{(k,l)}, \mathbf{y}).$$

• M-Step: Update $\boldsymbol{\theta}^{(k)}$ according to

$$\widehat{\boldsymbol{\theta}}^{(k+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta} | \widehat{\boldsymbol{\theta}}^{(k)}).$$

SAEM Algorithm - Delyon et al. (1999)

E-Step:

- **1. Simulation-step:** Draw $\mathbf{q}^{(k,l)}$ (l = 1, ..., m) from the conditional distribution $f(\mathbf{q}|\mathbf{y}, \widehat{\boldsymbol{\theta}}^{(k-1)})$;
- 2. Stochastic-approximation-step: Update $Q(\theta|\widehat{\theta}^{(k)})$ according to

$$Q(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k)}) = Q(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k-1)}) + \delta_k \left[\frac{1}{m}\sum_{l=1}^m \ell_c(\boldsymbol{\theta}|\mathbf{q}^{(k,l)},\mathbf{y}) - Q(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k-1)})\right],$$

where $\ell_c(\boldsymbol{\theta} \mid \mathbf{y}_c) = \sum_{i=1}^n \ell_i(\boldsymbol{\theta} \mid \mathbf{y}_c)$ is the complete log-likelihood function and δ_k is a smoothness parameter, *i.e.*, a decreasing sequence of positive numbers such that $\sum_{k=1}^{\infty} \delta_k = \infty$ and $\sum_{k=1}^{\infty} \delta_k^2 < \infty$.

M-Step: Update $\boldsymbol{\theta}^{(k)}$ according to

$$\widehat{\boldsymbol{\theta}}^{(k+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta} | \widehat{\boldsymbol{\theta}}^{(k)}).$$

Matos et.al, CMStatistics 2017

SAEM Algorithm - Delyon et al. (1999)

• As proposed by Galarza *et al.* (2015), we will consider the following smoothing parameter

$$\delta_k = \begin{cases} 1, & \text{if } 1 \le k \le cW; \\ \frac{1}{k-cW}, & \text{if } cW+1 \le k \le W, \end{cases}$$
(8)

where,

- W is the maximum number of iterations; and
- c is a cut point $(0 \le c \le 1)$ which determines the percentage of the initial iterations.

Summary

1 Introduction

- 2 Scale mixture of normal distributions (SMN)
- **3** The SMN censored regression model
- 4 The SAEM Algorithm

5 Inference

6 Data Analysis

7 Conclusions

Maximum likelihood estimation - SAEM

■ The complete data log-likelihood function:

$$\boldsymbol{\theta} = (\boldsymbol{\beta}^{\top}, \sigma^{2}, \boldsymbol{\phi}^{\top})^{\top} (\nu \text{ known});$$

$$\boldsymbol{\theta} \text{ Augmenting data: } \mathbf{y}_{c} = (\mathbf{V}^{\top}, \mathbf{C}^{\top}, \mathbf{y}^{\top}, \boldsymbol{u}^{\top})^{\top};$$

$$\boldsymbol{\theta} [\mathbf{V} \ \mathbf{C} \ \mathbf{y}] \Rightarrow [\mathbf{y}].$$

$$\ell_{c}(\boldsymbol{\theta}|\mathbf{y}_{c}) = \sum_{i=1}^{n} \{\log f(\mathbf{y}_{i}|u_{i}) + \log h(u_{i}|\boldsymbol{\nu})\} \\ = -\frac{N}{2} \log \sigma^{2} - \sum_{i=1}^{n} \frac{1}{2} \log |\mathbf{E}_{i}| - \sum_{i=1}^{n} \frac{\kappa^{-1}(u_{i})}{2\sigma^{2}} (\mathbf{y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta})^{\top} \mathbf{E}_{i}^{-1} (\mathbf{y}_{i} - \mathbf{X}_{i}\boldsymbol{\beta}) \\ + \sum_{i=1}^{n} \log h(u_{i}|\boldsymbol{\nu}) + C,$$

with C being a constant that does not depend on the parameter vector $\boldsymbol{\theta}$ and $\sum_{i=1}^{n} n_i = N$.

Maximum likelihood estimation - SAEM

 \blacksquare Q-function: For the *i*-th subject,

$$\begin{split} Q_i\left(\boldsymbol{\theta}|\widehat{\boldsymbol{\theta}}^{(k)}\right) &= -\frac{1}{2\sigma^2}E\left[\kappa^{-1}(u_i)(\mathbf{y}_i-\mathbf{X}_i\boldsymbol{\beta})^\top \mathbf{E}_i^{-1}(\mathbf{y}_i-\mathbf{X}_i\boldsymbol{\beta})|\mathbf{V},\mathbf{C},\widehat{\boldsymbol{\theta}}^{(k)}\right] \\ &- \frac{n_i}{2}\log\sigma^2 - \frac{1}{2}\log|\mathbf{E}_i| \\ &= -\frac{n_i}{2}\log\widehat{\sigma^2}^{(k)} - \frac{1}{2}\log|\widehat{\mathbf{E}}_i^{(k)}| - \frac{1}{2\sigma^2}\int_{\mathbf{T}}^{(k)}\left[tr\left(\widehat{\kappa\mathbf{y}}_i^{2}{}^{(k)}\widehat{\mathbf{E}}_i^{-1}(k)\right) \\ &+ \widehat{\kappa_i}^{(k)}\widehat{\boldsymbol{\beta}}^{(k)\top}\mathbf{X}_i^\top \widehat{\mathbf{E}}_i^{-1(k)}\mathbf{X}_i\widehat{\boldsymbol{\beta}}^{(k)} - 2\widehat{\boldsymbol{\beta}}^{(k)\top}\mathbf{X}_i^\top \widehat{\mathbf{E}}_i^{-1(k)}\widehat{\kappa\mathbf{y}}_i^{(k)}\right], \end{split}$$

with

$$\widehat{\boldsymbol{\kappa}}_{i}^{2^{(k)}} = E\{\boldsymbol{\kappa}^{-1}(u_{i})\mathbf{y}_{i}\mathbf{y}_{i}^{\top}|\mathbf{V}_{i}, \mathbf{C}_{i}, \widehat{\boldsymbol{\theta}}^{(k)}\}, \qquad (9)$$

$$\widehat{\boldsymbol{\kappa}}_{\mathbf{y}_{i}}^{(k)} = E\{\kappa^{-1}(u_{i})\mathbf{y}_{i}|\mathbf{V}_{i}, \mathbf{C}_{i}, \widehat{\boldsymbol{\theta}}^{(k)}\},$$
(10)

$$\widehat{\kappa_i}^{(k)} = E\{\kappa^{-1}(u_i)|\mathbf{V}_i, \mathbf{C}_i, \widehat{\boldsymbol{\theta}}^{(k)}\}.$$
(11)

Matos et.al, CMStatistics 2017

SAEM - E-step

Simulation-step: Gibbs Sampler

Step 1. Sample \mathbf{y}_{i}^{c} from $f(\mathbf{y}_{i}^{c}|\mathbf{V}_{i}^{c},\mathbf{y}_{i}^{o},u_{i},\boldsymbol{\theta}^{(k)})$, where $f(\mathbf{y}_{i}^{c}|\mathbf{V}_{i}^{c},\mathbf{y}_{i}^{o},u_{i},\boldsymbol{\theta}^{(k)}) \sim \operatorname{TN}_{n_{i}^{c}}(\boldsymbol{\mu}_{i},\kappa(u_{i})\mathbf{S}_{i};\mathbb{A}_{i})$, with $\boldsymbol{\mu}_{i} = \mathbf{X}_{i}^{c}\boldsymbol{\beta} + \boldsymbol{\Omega}_{i}^{co}(\boldsymbol{\Omega}_{i}^{oo})^{-1}(\mathbf{y}_{i}^{o} - \mathbf{X}_{i}^{o}\boldsymbol{\beta})$ and $\mathbf{S}_{i} = \boldsymbol{\Omega}_{i}^{cc} - \boldsymbol{\Omega}_{i}^{co}(\boldsymbol{\Omega}_{i}^{oo})^{-1}\boldsymbol{\Omega}_{i}^{oc}$. Then, $\mathbf{y}_{i} = (y_{i1}, \dots, y_{in_{i}^{c}}, y_{n_{i}^{c}+1}, \dots, y_{n_{i}})$ is a sample generated for the n_{i}^{c} censored cases and the observed values (uncensored cases).

Step 2. Sample u_i from $f(u_i | \mathbf{y}_i, \boldsymbol{\theta}^{(k)})$.

SAEM - E-step

a) Student's-t,
$$U_i \sim Gamma(\frac{\nu}{2}, \frac{\nu}{2})$$
 and $\kappa(u_i) = \frac{1}{u_i}$,
 $f(u_i | \mathbf{y}_i, \boldsymbol{\theta}^{(k)}) \sim Gamma\left(\frac{\nu + n_i}{2}, \frac{\nu + (\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})^\top \boldsymbol{\Sigma}_i^{-1}(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})}{2}\right);$

(b) Slash,
$$U_i \sim Beta(\nu, 1)$$
 and $\kappa(u_i) = \frac{1}{u_i}$,
 $f(u_i | \mathbf{y}_i, \boldsymbol{\theta}^{(k)}) \sim TGamma\left(\nu + \frac{n_i}{2}, \frac{(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})^\top \boldsymbol{\Sigma}_i^{-1}(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})}{2}, 1\right);$

(c) Contaminated normal, $h(u|\boldsymbol{\nu}) = \nu \mathbb{I}_{\{\rho\}}(u) + (1-\nu)\mathbb{I}_{\{1\}}(u)$, and $\kappa(u_i) = \frac{1}{u_i}$, $f(u_i|\mathbf{y}_i, \boldsymbol{\theta}^{(k)})$, is a discrete distribution taking values γ with probability $\frac{p_1}{p_1+p_2}$ and 1 with probability $\frac{p_2}{p_1+p_2}$, where

$$p_1 = \nu \gamma^{\frac{n_i}{2}} \exp\left(-\frac{\gamma}{2}(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})^\top \boldsymbol{\Sigma}_i^{-1}(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})\right),$$

$$p_2 = (1 - \nu) \exp\left(-\frac{1}{2}(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})^\top \boldsymbol{\Sigma}_i^{-1}(\mathbf{y}_i - \mathbf{X}_i \boldsymbol{\beta})\right).$$

Matos et.al, CMStatistics 2017

SAEM - E-step

■ Stochastic-approximation-step: Since the sequence $(\mathbf{y}_i^{(k,l)}, u_i^{(k,l)})$ for l = 1, ..., m is collected at the k-th iteration, we replace the conditional expectations given in (9) –(11) by the following stochastic approximations:

$$\widehat{\boldsymbol{\kappa}\mathbf{y}_{i}^{2}}^{(k)} = \widehat{\boldsymbol{\kappa}\mathbf{y}_{i}^{2}}^{(k-1)} + \delta_{k} \left[\frac{1}{m} \sum_{l=1}^{m} \mathbf{y}_{i}^{(k,l)} (\mathbf{y}_{i}^{(k,l)})^{\top} - \widehat{\boldsymbol{\kappa}\mathbf{y}_{i}^{2}}^{(k-1)} \right], \quad (12)$$

$$\widehat{\boldsymbol{\kappa}\mathbf{y}_{i}}^{(k)} = \widehat{\boldsymbol{\kappa}\mathbf{y}_{i}}^{(k-1)} + \delta_{k} \left[\frac{1}{m} \sum_{l=1}^{m} \mathbf{y}_{i}^{(k,l)} u_{i}^{(k,l)} - \widehat{\boldsymbol{\kappa}\mathbf{y}_{i}}^{(k-1)} \right], \quad (13)$$

$$\widehat{\kappa_i}^{(k)} = \widehat{\kappa_i}^{(k-1)} + \delta_k \left[\frac{1}{m} \sum_{l=1}^m u_i^{(k,l)} - \widehat{\kappa_i}^{(k-1)} \right].$$
(14)

 SAEM - $\operatorname{CM-step}$

Update $\hat{\boldsymbol{\theta}}^{(k)}$ by the maximization of $Q(\boldsymbol{\theta}|\hat{\boldsymbol{\theta}}^{(k)})$, which leads to the following expressions:

$$\begin{split} \widehat{\boldsymbol{\beta}}^{(k+1)} &= \left(\sum_{i=1}^{n} \widehat{\kappa_{i}}^{(k)} \mathbf{X}_{i}^{\top} \widehat{\mathbf{E}}_{i}^{-1(k)} \mathbf{X}_{i}\right)^{-1} \sum_{i=1}^{n} \mathbf{X}_{i}^{\top} \widehat{\mathbf{E}}_{i}^{-1(k)} \widehat{\kappa \mathbf{y}_{i}}^{(k)}, \\ \widehat{\sigma^{2}}^{(k+1)} &= \frac{1}{N} \sum_{i=1}^{n} \left[tr \Big(\widehat{\kappa \mathbf{y}_{i}^{2}}^{(k)} \widehat{\mathbf{E}}_{i}^{-1(k)} \Big) - 2 \widehat{\boldsymbol{\beta}}^{(k)\top} \mathbf{X}_{i}^{\top} \widehat{\mathbf{E}}_{i}^{-1(k)} \widehat{\kappa \mathbf{y}_{i}}^{(k)} \\ &+ \widehat{\kappa_{i}}^{(k)} \widehat{\boldsymbol{\beta}}^{(k)\top} \mathbf{X}_{i}^{\top} \widehat{\mathbf{E}}_{i}^{-1(k)} \mathbf{X}_{i} \widehat{\boldsymbol{\beta}}^{(k)} \right], \\ \widehat{\boldsymbol{\phi}}^{(k+1)} &= \underset{\boldsymbol{\phi} \in (0,1) \times \mathbb{R}^{+}}{\operatorname{argmax}} \left(-\frac{1}{2 \widehat{\sigma^{2}}^{(k)}} \left[tr \Big(\widehat{\kappa \mathbf{y}_{i}^{2}}^{(k)} \widehat{\mathbf{E}}_{i}^{-1(k)} \Big) - 2 \widehat{\boldsymbol{\beta}}^{(k)\top} \mathbf{X}_{i}^{\top} \widehat{\mathbf{E}}_{i}^{-1(k)} \widehat{\kappa \mathbf{y}_{i}}^{(k)} \\ &+ \widehat{\kappa_{i}}^{(k)} \widehat{\boldsymbol{\beta}}^{(k)\top} \mathbf{X}_{i}^{\top} \widehat{\mathbf{E}}_{i}^{-1(k)} \mathbf{X}_{i} \widehat{\boldsymbol{\beta}}^{(k)} \right] - \frac{1}{2} \log(|\widehat{\mathbf{E}}_{i}^{-1(k)}|) \Big). \end{split}$$

Imputation of censored components

• Let \mathbf{y}_i^c be the true unobserved response vector for the censored components. The predictions of the censored components, denoted by $\tilde{\mathbf{y}}_i^{c(k)}$, are calculated as

$$\tilde{\mathbf{y}}_{i}^{c(k)} = E\{\mathbf{y}_{i} \mid \mathbf{V}_{i}, \mathbf{C}_{i}, \widehat{\boldsymbol{\theta}}^{(k)}\}, \quad i = 1, \dots, n,$$

where

$$\tilde{\mathbf{y}}_{i}^{c(k)} = \tilde{\mathbf{y}}_{i}^{c(k-1)} + \delta_{k} \left[\frac{1}{m} \sum_{l=1}^{m} \mathbf{y}_{i}^{c(k,l)} - \tilde{\mathbf{y}}_{i}^{c(k)} \right].$$
(15)

The y_i^{c(k,l)}'s are obtained without computational effort from the Step 1 of the proposed SAEM algorithm.

Prediction

■ Following Wang (2013) and Garay *et al.* (2015), **the best linear predictor** of **y**_{*i*,*pred*} (with respect to the minimum mean squared error) is the conditional expectation of **y**_{*i*,*pred*} given **y**_{*i*,*obs**}, namely

$$\widehat{\mathbf{y}}_{i,pred}(\boldsymbol{\theta}) = \mathbf{X}_{i,pred}\boldsymbol{\beta} + \boldsymbol{\Omega}_{i}^{pred,obs^{*}} \boldsymbol{\Omega}_{i}^{obs^{*},obs^{*}-1} \left(\mathbf{y}_{i,obs^{*}} - \mathbf{X}_{i,obs^{*}}\boldsymbol{\beta} \right), \quad (16)$$

where, $\bar{\mathbf{X}}_i = (\mathbf{X}_{i,obs}, \mathbf{X}_{i,pred})$ be the $(n_{i,obs} + n_{i,pred}) \times p$ design matrix corresponding to $\bar{\mathbf{y}}_i = (\mathbf{y}_{i,obs}^\top, \mathbf{y}_{i,pred}^\top)$,

$$\begin{split} \bar{\mathbf{y}}_{i}^{*} &= \left(\mathbf{y}_{i,obs^{*}}^{\top}, \mathbf{y}_{i,pred}^{\top}\right)^{\top} \sim SMN_{n_{i,obs}+n_{i,pred}} \left(\mathbf{X}_{i}\boldsymbol{\beta}, \boldsymbol{\Omega}_{i}; \mathbf{H}\right),\\ \text{with } \boldsymbol{\Omega}_{i} &= \left(\begin{array}{c} \boldsymbol{\Omega}_{i}^{obs^{*},obs^{*}} & \boldsymbol{\Omega}_{i}^{obs^{*},pred}\\ \boldsymbol{\Omega}_{i}^{pred,obs^{*}} & \boldsymbol{\Omega}_{i}^{pred,pred} \end{array}\right). \end{split}$$

Summary

1 Introduction

- 2 Scale mixture of normal distributions (SMN)
- **3** The SMN censored regression model
- 4 The SAEM Algorithm

5 Inference

6 Data Analysis

7 Conclusions

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \boldsymbol{\epsilon}_i, \quad i = 1, \dots, 72$$

- y_{ij} is the log₁₀ HIV RNA for subject *i* at time t_j ,
- 362 observations,
- 7% of the observation were below the detection limits,
- $t_1 = 0, t_2 = 1, t_3 = 3, t_4 = 6, t_5 = 9, t_6 = 12, t_7 = 18, t_8 = 24$ months before the interruption.
- This data set was analyzed previously by Vaida et al. (2007), Vaida & Liu (2009), Matos et al. (2013b), Matos et al. (2013a) e and Garay et al. (2015).

Example - UTI data

	Criteria	DEC	AR(1)	MA(1)	SYM	UNC
Т	ℓ_{max}	-363.08	-406.98	-468.31	-364.21	-473.92
	AIC	748.15	833.96	956.62	748.43	965.84
	BIC	790.96	872.87	995.53	787.34	1000.86
	ν	2.3	2.1	2.1	2.3	2.1
SL	ℓ_{max}	-359.72	-403.08	-470.46	-360.90	-476.12
	AIC	741.44	826.15	960.92	741.79	970.24
	BIC	784.25	865.07	999.84	780.71	1005.26
	ν	0.8	0.7	1.0	0.8	1.0
CN	ℓ_{max}	-351.32	-396.56	-481.87	-353.37	-487.92
	AIC	724.64	813.12	983.74	726.75	993.83
	BIC	767.44	852.04	1022.66	765.66	1028.86
	ν	(0.2, 0.1)	(0.3, 0.1)	(0.1, 0.1)	(0.2, 0.1)	(0.1, 0.1)
N	ℓ_{max}	-411.93	-463.05	-516.52	-412.06	-524.17
	AIC	845.87	946.11	1053.03	844.11	1066.34
	BIC	888.68	985.02	1091.95	883.03	1101.37
	ν	-	-	-	-	-

Information criteria for the SMN-CR models under DEC structure:

	Т	$_{\rm SL}$	CN	Ν
Parameter	Estimative (SE)	Estimative (SE)	Estimative (SE)	Estimative (SE)
β_1	4.040 (0.096)	4.020 (0.096)	3.993 (0.097)	3.625(0.136)
β_2	4.321(0.107)	4.312(0.107)	4.303(0.111)	4.185(0.178)
β_3	4.354(0.111)	4.344(0.115)	4.332 (0.119)	4.259(0.212)
β_4	4.533(0.115)	4.498(0.117)	4.487 (0.119)	4.375(0.201)
β_5	4.675(0.130)	4.649(0.129)	4.638(0.122)	4.579(0.223)
β_6	4.670(0.147)	4.646(0.141)	4.623(0.139)	4.582(0.243)
β_7	4.688(0.136)	4.670(0.140)	4.657 (0.152)	4.688(0.218)
β_8	4.871(0.183)	4.842(0.189)	$4.791 \ (0.206)$	4.806(0.378)
σ^2	0.544(0.139)	0.282 (0.065)	$0.543 \ (0.100)$	1.090(0.134)
ϕ_1	0.812(0.040)	0.820(0.038)	0.823 (0.038)	0.700(0.043)
ϕ_2	0.094(0.083)	0.096 (0.082)	$0.121 \ (0.085)$	0.028(0.071)

ML estimates with standard errors for the SMN-CR models under DEC structure:

Prediction accuracy for the SMN-CR models under DEC correlation structure:

	Т	SL	CN	Ν
MSE	0.219	0.227	0.197	0.240
MAE	0.357	0.361	0.340	0.383
	$MAE = \frac{1}{58} \sum_{i,j} y $	$ y_{ij} - y_{ij}^* $ and	$MSE = \frac{1}{58} \sum_{i,j}$	$\sum_{ij}(y_{ij}-y_{ij}^{*})^{2},$

Example - UTI data

Prediction performance for three random subjects.

Summary

1 Introduction

- 2 Scale mixture of normal distributions (SMN)
- **3** The SMN censored regression model
- 4 The SAEM Algorithm
- 5 Inference
- 6 Data Analysis

7 Conclusions

Conclusions

- We have proposed a robust approach to linear regression models with censored observations based on the class of multivariate SMN distribution, called the SMN-CR model.
- To model the autocorrelation among irregularly observed measures, a damped exponential correlation structure was adopted, as proposed by Muñoz et al. (1992).
- A novel SAEM algorithm to obtain the ML estimates is developed by exploring statistical properties of the SMN class of distribution.
- We applied our methods to a recent AIDS study (freely downloadable from R), concluding that when the antiretroviral therapy is interrupted, the HIV-1 RNA levels in blood increase consistently along the period of evaluation.

Main reference

L.A Matos, Victor H. Lachos, Luis M. Castro and T-I Lin. (2015) Heavy-tailed longitudinal regression models for censored data: A likelihood based perspective. *Submitted*

References

- Andrews, D. F. & Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society. Series B (Methodological), pages 99-102.
- Delyon, B., Lavielle, M. & Moulines, E. (1999). Convergence of a stochastic approximation version of the em algorithm. Annals of Statistics, pages 94–128.
- Dempster, A., Laird, N. & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B., 39, 1–38.
- Garay, A. M., Castro, L. M., Leskow, J. & Lachos, V. H. (2015). Censored linear regression models for irregularly observed longitudinal data using the multivariate-t distribution. *Statistical methods in medical research*, page 0962280214551191.
- Lachos, V. H., Bandyopadhyay, D. & Dey, D. K. (2011). Linear and nonlinear mixed-effects models for censored hiv viral loads using normal/independent distributions. *Biometrics*, 67, 1594-1604.
- Lange, K. L. & Sinsheimer, J. S. (1993). Normal/independent distributions and their applications in robust regression. J. Comput. Graph. Stat, 2, 175–198.
- Matos, L., Prates, M., Chen, M.-H. & Lachos, V. (2013a). Likelihood based inference for linear and nonlinear mixed-effects models with censored response using the multivariate-t distribution. *Statistica Sinica*, 23, 1323–1345.
- Matos, L. A., Lachos, V. H., Balakrishnan, N. & Labra, F. V. (2013b). Influence diagnostics in linear and nonlinear mixed-effects models with censored data. *Computational Statistics & Data Analysis*, 57(1), 450–464.
- Muñoz, A., Carey, V., Schouten, J. P., Segal, M. & Rosner, B. (1992). A parametric family of correlation structures for the analysis of longitudinal data. *Biometrics*, 48, 733-742.
- Samson, A., Lavielle, M. & Mentré, F. (2006). Extension of the saem algorithm to left-censored data in nonlinear mixed-effects model: application to hiv dynamics model. *Computational statistics & data* analysis, 51(3), 1562-1574.
- Vaida, F. & Liu, L. (2009). Fast Implementation for Normal Mixed Effects Models With Censored Response. Journal of Computational and Graphical Statistics, 18(4), 797-817.
- Vaida, F., Fitzgerald, A. & DeGruttola, V. (2007). Efficient hybrid EM for linear and nonlinear mixed effects models with censored response. Computational Statistics & Data Analysis, 51(12), 5718-5730.
- Wang, W.-L. (2013). Multivariate t linear mixed models for irregularly observed multiple repeated measures with missing outcomes. *Biometrical Journal*, 55(4), 554-571.
- Wei, G. C. & Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of the American Statistical Association, 85(411), 699-704.

Matos et.al, CMStatistics 2017

SMN-CR model

Acknowledgments

Thank you!